An SCF-MO-CN DO Study of Equilibrium Geometries, Force Constants, and Bonding Energies: CNDO/BW.[†] Part III.¹ Triatomics and Poly**atomics**

By **R. J. Boyd,** Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada

M. A. Whitehead,*\$ Quantum Chemistry Laboratory, Chemistry Department, McGill University, **The** Royal Institution for the Advancement **of** Learning, Montreal **4 10,** Quebec, Canada

The CNDO/BW theory is applied to triatomic and polyatomic molecules and ions to calculate their spectroscopic ground states, equilibrium geometries, bonding energies, and force constants. The calculated results are compared to the experimental results and the results of other CNDO methods.

THE CNDO/BW method^{1,2} is applied to triatomic and energies, and force constants, are compared to the scopic ground states, equilibrium geometries, bonding other semiempirical and *ab initio* calculations.

t Presented at the Chemical Institute of Canada Meeting, Halifax, June **1971.**

1 *Present address:* University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW.

polyatomic molecules and ions. The calculated spectro- experimental results and to the results predicted by

¹Part **11,** R. J. Boyd and M. **A.** Whitehead, preceding paper. Part I, R. J. Boyd and M. **A.** Whitehead, *J.C.S. Dalton,* 1972, **73.**

DISCUSSION

All parameter sets predict the spectroscopic ground states correctly for those triatomic molecules with known ground states. In a few cases for which there is no spectroscopic information, the method predicts two different states depending on the parameter set used.

The calculated equilibrium geometries (Table **1)** agree well with experiment. All parameter sets predict correctly bent or linear equilibrium geometries where the equilibrium geometry is known. The mean deviations from experiment of the bond lengths not used to calibrate the molecular parameters are **0.025, 0.028,** 0.031 , and 0.035 Å for parameter sets (I) — (IV) , and the corresponding deviations for the bond angles are **4.2, 3.2, 5.2,** and **4.1".**

The bond angles are more sensitive to changes in the parameters and less accurate than the bond lengths. This is to be expected since the molecular parameters were chosen to yield bond lengths in agreement with experiment for a few molecules, but no attempt was made to calibrate the bond angles directly. 2 The inclusion of VSIP values in the evaluation of resonance integrals yields larger angles for nonlinear triatomic molecules than the simple overlap proportionality approximation, and leads to angles which are larger than observed, while the overlap approximation leads to angles which are too small. The simple overlap approximation leads to larger deviations for both bond lengths and angles.

OI

FF

 P_F

The NO bonds in N_2O and N_2O^+ , the CS bonds in COS, CS_2 , and CS_2^+ , and the SO bond in SO_2 are all predicted to be much longer than observed. The results for the series $NO₂⁺$, $NO₂$, and $NO₂⁻$ agree very well with experiment but in $N\ddot{O}^+$, N_2O , and N_2O^+ , the NO bond is consistently too long by **0-05A** or more. There is no explanation of why some NO bonds are consistently well predicted and others are seriously overestimated, whereas for S the errors are in part due to the omission of **3d** orbitals in the basis set.

Recent *ab initio* calculations³⁻⁶ on SO, SO₂, O₂, and O_3 comparing the use of an $s\phi$ versus $s\phi d$ basis set have shown that *d* orbitals are important in cases where S has ' an excess of valency '. When the S valency is **2** or less as in $\rm H_2S$ and SO, the d orbitals are unimportant; when the S valency is 4, as in SO_2 , the *d* orbitals are important. The present results reflect this 'excess of valency ' idea, since we get good results for HS using parameters from H_2S , neither of which displays ' excess of valency,' but a much less successful result for SO_2 with parameters from SO, where $SO₂$ has ' excess of valency'; the S-0 bond length is too long and the 0-S-0 angle too small: the CNDO/BW results are much better than the *ab initio* results using an *sp* basis and comparable with the *ab initio* results using an *spa* basis.

Both linear and bent ground states are predicted for CH_2^+ , FH_2^+ , FH_2 , and CH_2 depending on the parameters. Parameter set (I) predicts all four to be linear but BH₂ and H₂O, which are isoelectronic with CH_{2}^{+}

TABLE 1

Equilibrium geometries of triatomic and polyatomic molecules and ions^a

³ D. P. Santry and G. **A.** Segal, J. Chern. Phys., 1967, **47,** 158.

⁴ I. H. Hillier and V. **R.** Saunders, Chem. Comm., 1970, 1183. ⁵ I. H. Hillier, 'Colloquia in Atomic and Molecular Structure', Oxford, 1971.

⁶ I. H. Hillier and V. R. Saunders, Chem. Comm., 1970, 1510.

TABLE 1 *(Continued)*

	Parameter set ^b					
Molecule ^c	(IVC) d	(I)	(II)	(III)	(IV)	${\rm Expt.}^{\bullet}$
$O_{\mathbf{3}}(C_{\mathbf{2}v})$	$_{\rm Roo}$	1.258	1.259	$1\cdot 257$	1.258	$1 - 278$
	θ 000	$128 - 4$	128.1	116-7	116.3	$116-8$
O_3 ⁺ (C_{2v})	$_{\rm{Koo}}$	$1 - 226$	1.227	$1 - 236$	1.237	
	θ 000	147.6	147.0	129.1	128.5	
COS	$\rm R_{CO}$	1.155	1.153	1.165	1.162	1.160
	$\rm R_{\rm CS}$	1.594	$1 - 600$	$1 - 622$	1.636	1.560
	$\theta_{\rm{OGS}}$	180.0	180-0	$180-0$	$180-0$	$180-0$
COS+	$\rm R_{CO}$	1.134	$1 - 135$	1.138	1.139	
	$\rm R_{CS}$	1.654	1.655	1.703	1.712	
	$\theta_{\rm OCS}$	180.0	$180 - 0$	180∙0 1.606	$180-0$ 1.606	1.553
$\text{CS}_\mathbf{2}$ $(C_{\mathbf{2}v})$	$\rm R_{CS}$	1.596 180∙0	1.593 $180-0$	$180-0$	$180 - 0$	$180-0$
CS_2 ⁺ (C_{2r})	$\theta_{\rm SCS}$ $\rm R_{cs}$	1.600	1.597	1.607	1.606	1.564
	$\theta_{\rm{SCS}}$	$180-0$	$180-0$	$180-0$	$180-0$	180 0
$SO_2(C_{2v})$	$_{\rm Rso}$	1.517	1.522	1.515	1.519	1.432
	θ oso	115.6	113.6	110-7	109·1	119-5
SO_2^+ (C_{2v})	$_{\rm Rso}$	1.492	1.498	1.490	1.495	
	θ _{OSO}	$120 - 4$	$117-2$	116-1	113.8	
$CH_3(C_{3v})$	$\rm \kappa_{\rm CH}$	1.083	1.088	1.098	$1 - 104$	1.079
	$\theta_{\rm HCH}$	$120-0$	$117 - 1$	$112 - 6$	111.8	120·0
$CH_3^+ (C_{3v})$	$\rm R_{\rm CH}$	1.097	1.085	1.105	1.094	
	$\theta_{\rm HCH}$	120.0	120.0	$120-0$	$120\!\cdot\!0$	
$CH_3^ (C_{3v})$	$\rm R_{\rm CH}$	1.124	1.148	$1 - 134$	1.151	
	$\theta_{\text{{\bf B}CH}}$	102.0	$101-0$	$95-2$	97.7	
$\begin{array}{l} \mathrm{NH}_3\ (C_{3v}) \\ \mathrm{NH}_3^+\ (C_{3v}) \end{array}$	θ нмн	102.9 1.029	95.9 1.003	$80-3$ $1 - 025$	87.1 1.019	$106-6$
	$\rm R_{\rm NE}$	120-0	120·0	118-3	111-5	
NH_4 ⁺ (T_d)	$\theta_{\rm HNH}$ $\rm R_{\rm NH}$	1.026	1.005	1.015	1.011	(1.032)
$OH_3(C_{3v})$	R_{OR}	1.012	1.004	0.980	0.977	
	θ_HOH	120.0	$120-0$	103.8	105.2	
OH_3^+ (C_{3v})	$\rm R_{OH}$	0.977	0.963	0.976	0.973	(0.96)
	$\theta_{\textrm{HOH}}$	120.0	$120 - 0$	92.8	87.8	(117)
$PH_3(C_{3v})$	$\theta_{\rm HPH}$	101·6	95.5	$93-0$	93 I	93.3
$\rm PH_{3}^{+}$ $(\overline{C}_{3v}^{'})$	$\rm R_{\rm PH}$	1.422	1.401	1.431	1.422	
	$\theta_{\rm HPH}$	120.0	112.3	116-4	112.2	
PH_4 ⁺ (T_d)	$\rm R_{PH}$	1.423	1.394	1.425	1.417	1.42
$BF_3(C_{3v})$	$\rm R_{BF}$	1.310 120 0		1.306 $120 \ 0$		1.295 $120 - 0$
CO_3^2 ⁻ (C_{3v})	$\theta_{\rm FBF}$	1.292	1.297	1.302	1.309	1.29
	$\rm R_{CO}$ $\theta_{\rm COO}$	$120-0$	$120-0$	120.0	120.0	$120 - 0$
$NO_{3}^ (C_{3v})$	R_{N0}	1.291	1.295	1.289	1.292	1.268
	$\theta_{\rm ONO}$	120·0	$120-0$	$120\!\cdot\!0$	120.0	120.0
$CH_2O(C_{2v})$	$\rm R_{CO}$	1.171	1 161	1.186	1.180	1.203 ^h
	$\rm R_{CH}$	1.097	$1 - 100$	1·103	$1\cdot 106$	$1\cdot 101$
	$\theta_{\rm HCH}$	117-1	$110-6$	118.8	110-5	116.5
$CH2O+$ $(C2v)$	$\rm R_{CO}$	$1 - 173$	1.176	1.186	1.188	
	$_{\rm R_{\rm CH}}$	1.104	1-091	1.114	$1\cdot 101$	
	$\theta_{\rm HCH}$	$131-3$ 1.258	126·1 1.269	148.8 1.237	135.8 1.244	1.203
C_2H_2 $(D_{\infty h})$	$\rm R_{\rm CC}$ $\rm R_{\rm CH}$	1.070	1.068	$1\mathord{\cdot}080$	1.078	$1\mathord{\cdot} 061$
$C_2H_2^+$ $(D_{\infty k})$	$\rm R_{CO}$	1.320	1.333	1.310	1.321	
	$\rm R_{CH}$	1.084	1.074	1.101	1.092	
C_2H_4 (D_{2h})	$\rm R_{CO}$	1.376	1.383	1.364	1.368	1.337
	$\rm R_{\rm CH}$	$1\mathord{\cdot}092$	1.093	1.095	1.096	1.086
	$\theta_{\rm HCH}$	114.9	112.6	118.8	116.2	117.3
$C_2H_4^+ (D_{2h})$	$\rm R_{\rm CC}$	1.323	1.473	1.308	1-477	
	$\rm R_{C\bf H}$	$1 - 107$	1.089	1·113	1.096	
	$\theta_{\rm HCH}$	92.5	$116-0$	$103 - 2$	$120-7$	
$C_2H_6(D_3)$	R_{CH}	1.099 $107 - 7$	1.101 $106-8$	1.099 $109 - 4$	$1 - 100$ 108.2	$1\mathord{\cdot}093$ 107.8
	$\theta_{\text{{\bf H}CH}}$ ω^i	$180 - 0$	$180-0$	$180\!\cdot\!0$	$180-0$	180.0

^aBond lengths in A, angles in deg. Parameter sets are: (I) resonance integrals from equation (12) with Hinze and Jaffé atomic parameters; (II) equation (12) with Hartree-Fock atomic parameters; (III) resonance integrals from equation (11) with Hinze and Jaffé parameters; (IV) equation (11) with Hartree–Fock atomic parameters, all from ref. 2. \cdot Symmetry
constraints are given in parentheses. \cdot Bond lengths used for
calibration of bonding and core repulsion parameters were:
OH, SH, CN, BH, CH, NH, SiH, PH, a wise. *f* G. Herzberg, *Proc. Roy. Soc.,* 1961, A, **262,** 291. **^g**K. Dressler and D. *A.* Ramsev. *Phil. Trans..* 1959. *A.* **251.** 553. ^{*} K. Tagaki and T. 0
18, 1174. * Dihedral angle. K. Tagaki and T. Oka, *J. Phys. Soc. (Japan)*, 1963;

and FH_2^+ respectively, have bent ground states $\frac{7}{1}$ and, therefore, in the absence of structural data, the predictions that CH_2^+ and FH_2^+ are bent by parameter sets (II), (III), and (IV) for CH_2^+ and parameter sets (III) and (IV) for FH_2^+ seem more reasonable.⁸

The valence-shell electron configurations for FH_{2} and ClH₂ are $2\sigma_q^2 1\sigma_u^2 1\pi_u^4 3\sigma_q$ and $3\sigma_q^2 2\sigma_u^2 2\pi_u^4 4\sigma_q$, respectively, in the linear form and $2a_1^21b_2^23a_1^21b_1^24a_1$ and $4a_1^22b_2^2$ - $5a_1^22b_1^26a_1$, respectively, in the bent form. The $1b_2$ and $3a_1$ orbitals in FH₂ and the $2b_2$ and $5a_1$ orbitals in ClH, may be interchanged depending on the parameters. The singly occupied σ_g orbital is formed from the valence-shell *s* orbitals and is antibonding between the halogen and hydrogen atoms. The singly occupied *a,* orbital is formed from the valence-shell *p* orbital lying along the C_2 axis of the molecule and the valence-shell s orbitals. The *a,* orbital is antibonding between the halogen atom and the hydrogens.

From the form of the *a,* orbital it is apparent that increasing the H-X-H angle lowers the energy of the a_1 orbital. Thus if FH_2 and ClH_2 are thought of as being formed from FH_2^+ and CH_2^+ molecules with bent structures like H_2O , the addition of the ninth valenceshell electron to the a_1 orbital should lead to an increase in the H-X-H angle. Therefore, FH_2 and CH_2 are expected to have larger bond angles than their unipositive ions.

The lowest singlet of $CH₂$ has been shown spectroscopically to be bent, but the geometry of the lowest triplet is uncertain,' although it is generally assumed to be linear. The present CNDO/BW method predicts a bent triplet in agreement with recent *ab initio* calculations $(135.1^\circ \text{ and } 1.096 \text{ Å})$, which predict a relatively flat potential surface, between *135* and 180", with the most stable calculated linear geometry of *1-083* **A,** only 6.7 kcal mole⁻¹ greater than the calculated equilibrium geometry.

The NH_2 molecule is predicted to have a bent ${}^{2}B_1$ ground state in agreement with experiment, however parameter sets (HI) and (IV) predict a very small H-N-H angle, owing to orbital rearrangement. Parameter sets (I) and (II) yield $2a_1^21b_2^23a_1^21b_1$ whereas parameter sets (111) and (IV) predict that *3a,* lies below $1b_2$. The $3a_1$ orbital is bonding between the $2p$ orbital on N, which lies along the C_2 axis of the NH₂ molecule, and the hydrogen *1s* orbitals and is antibonding between the nitrogen *2s* orbital and the hydrogen 1s orbital. The $1b_2$ orbital is bonding between the hydrogen 1s orbitals and the nitrogen *29* orbital perpendicular to the C_2 axis and in the plane of the molecule. Unlike the $3a₁$ orbital, the $1b₂$ is antibonding between the hydrogen 1s orbitals. Thus the *3a,* orbital energy is lowered with decreasing angle, while the *lb,* orbital favours the linear

^{&#}x27; G. Herzberg, ' Electronic Spectra and Electronic Structure **of** Polyatomic Molecules,' Van Nostrand, Princeton, New Jersey, 1966.

A. D. Walsh, *J. Chem. Soc.*, 1953, 2260.

⁹ C. F. Bender and H. F. Schaeffer, *J. Amer. Chem. Soc.*, 1970, **92,** 4984.

TABLE 2

Bonding energies *a* of triatomic and polyatomic molecules and ions and their dissociation products

		Parameter set b			
Molecule •	(I)	(II)	(III)	(IV)	Expt. ^d
BH ₂	7.433		7.482		7.7
BH_{2}^{+} (B+)	7.219		6.841		
$^{1}CH_{2}$ ³ CH ₂	9.165 8·317	9.275 8.005	$9 - 783$ 7-995	10.212 7.947	9.41
$CH_2^+(C^+)$	8.918	8.080	$8 - 452$	7.906	
NH ₂	8.646	$8 - 658$	8.513	$8 - 509$	8.10
$NH_2^+ (H^+)$	9.897	9.169 (N^+)	9.468	8.801 (N^{+})	
OH ₂	10.063	10.058	10.060	$10 - 060$	$10-06$
$OH_2^+ (H^+)$	10.939	11.847	$10-230$	$10-208$	
FH, $FH_{2}^{-+} (H^{+})$	6.786 12.185	7.240 13.290	7.547 $11-406$	7.991 12.335	
1 Si H_{2}	7.030	7.372	7.534	8.347	
3 Si \rm{H}_{2}	$6 - 023$	5.544	5.898	5.797	
SiH_2^+ (Si ⁺) \mathbf{PH}_{2}	$6 - 023$ 6.977	5.513 6.964	5.902 6.972	5.756 6.930	6·9
$PH_2^+(P^+)$	7.563	6.807	7.410	$6 - 727$	
SH ₂	7.882	7.879	7.881	7.881	7 881
SH_2^+ (S ⁺)	8.458	8.034	8.335	7.915	
CH ₂ $CH_2^+ (H^+)$	5.201 10.317	5.549 10·123	5.509 10.125	5.858 9.919	
		$(Cl+)$		(Cl^+)	
HCN	13.539	13.537	13.537	13.537	13.537
$HCN+ (C+)$ HNO	11-301 9.818	11.505 9.931	11.218 $9 - 680$	11.045 9.886	9.0
BF ₂	12.381		11.960		$13-1$
CO_2	$17 - 720$	17.424	16.408	16.076	16.856
CO_2^+ (C+) CO_2^- (O-)	15.091 16.414	15·142 16.292	13.423 15.984	13.382 15.898	15.8
$\mathrm{N_{2}O}$	12.723	12.593	12.030	11.941	$11 - 724$
$N_{2}^{*}O^{+}$ (N^{+})	13.739	13.571	12.777	$12 - 643$	
$\overline{\text{NO}}_{2}$ $NO_2^+ (N^+)$	$9 - 333$ 10.483	9.221 10.217	9.506 $10 - 316$	9.539 10.187	9.85
$NO_2^- (N^-)$	10.552	10.520	10.921	11.002	
		$(O-)$		(O^-)	
O3	6.684	6.592 8.931	7.434 9.239	7.434 9.230	6.35
O_3^+ \cos	8.993 15-661	15.609	14.207	14.067	14.42
$COS+ (C+)$	14.946	$14 - 750$	13.464	13.167	
$\operatorname{CS}_2_{C\operatorname{S}_2^2^+}(C^+)$	12.751	12.849	$11-549$	$11-535$	11.98
SO_2	12.986 $8 - 642$	12.657 8.196	$11-678$ 9.324	$11 - 243$ 8.935	$11 - 177$
$SO_2^+ (S^+)$	8.563	8.531	9.169	9.212	
BH ₃	$12 \cdot 104$		$12 \cdot 100$		$12 \cdot 1$
CH ₃ $CH_3^+(C^+)$	13.419 14.048	$13\cdot 185$ 13·133	13.230 13.664	13.415 12.733	$13-4$
$CH_3^- (H_-)$	13.963	13.309	15.140	14.898	
CH,	18.179	18·175	$18 - 180$	18.180	18.180
NH_3 $NH_3^+ (H^+)$	12.922 14.862	12.934 13.251	12.930 13.119	12.930 $11 - 316$	12.93
		(N^+)		(N^+)	
NH_4 + (H+)	19.767	17.867	$17 - 793$	$15 - 035$	
OH ₃	$10 - 988$	(N^+) 11.544	12.056	(N^+) 12.498	
OH_{3}^{+} (H ⁺)	17.068	$17 - 674$	$16 - 185$	16.904	16.8
SiH ₄	13.866	13.871	13.871	$13-870$	13·87
PH_3 $PH_3^{\nu+}$ (P ⁺)	$10 - 465$ 11·129	10.467	10.470	$10-470$ 7.992	10·47
$PH_4^+ (P^+)$	15-007	8.891 12.391	$10 - 138$ 13.983	10.327	
BF_{3}	19.349		18.015		20·1
CO_3^2 - (O-)	18.408	15-938	17·182	14.699	
$NO3^- (N^-)$	13.440	13.272 (O^-)	13.821	13.811 $(O-)$	
CH ₂ O	$17 - 629$	17·639	16·567	16.460	16.3
$CH_2^-O^+$ (C ⁺)	17-197	16·484	16-149	15.221	17·53
$C_{2}H_{2}$ $C_2H_2^+$ (C ⁺)	15.795 15.562	15.113 14-422	15-301 14.677	14.455 13.325	
C_2H_4	$23 - 245$	22.940	22.875	22.469	$24\!\cdot\!36$
$C_2H_4^+ (C^+)$	22.839	22.375	22.313 30.817	$21-606$	30·818
$\rm{C_2H_6}$	30.818	30.817		30.818	

form. With parameter sets (111) and (IV), the reverse pertains. This effect is also observed for NH₂⁺.

The bonding energies **of** the triatomic molecules compare well with experiment, and the results (Table **2)** are comparable to those from CNDO/SW.¹⁰⁻¹² The experimental trends for AH₂ molecules, and for series such as CO₂, COS, and CS₂ are reproduced correctly by the present method. For the latter molecules and nonhydride triatomic molecules, the bonding energy is overestimated by parameter sets (I) and (11), and underestimated by parameter sets (111) and (IV). The

Force constants of polyatomic molecules *^a*

¹⁰M. **A.** Whitehead, in ' Sigma Molecular Orbital Theory,' **ed.** 0. Sinanoglu and K. Wiberg, Yale University Press, New Haven, Connecticut, 1970. 11 J. M. Sichel and **31. A.** Whitehead, *Theor. Chim. Acta,* 1968,

^a In eV. *b* Parameter sets are defined in Table 1. *c* Dissociation products are in parentheses. **d** Calc. from data in refs. 25 and 26

11, 220.

11, 220.

¹² R. J. Boyd and M. A. Whitehead, *J. Chem. Soc.* (*A*), 1969, 2598.

TABLE 3 *(Continued)*

Parameter set *^b*

TABLE 3 *(Continued)*

						85
		TABLE 3		(Continued)		
			Parameter set b			
Mole- cule	Type	(I)	(II)	(III)	(IV)	Expt.
$C_{2}H_{4}$	$_{\rm cc}$	$10-0$	$10-4$	$10-0$	$10-0$	10.99
	CН	6·2	5.9	5.8	5.6	6.2
$C_{2}H_{4}^{+}$	HCH $_{\rm cc}$	0.64 12.0	0.72 7.6	0.65 $12 \cdot 1$	0.72 7.2	0.65
	CН	5.5	$6-0$	$5-1$	5.6	
	нсн	0.26	0.65	0.30	0.67	
C_2H_6	$_{\rm cc}$	5.9	$6-0$	5.8	5.7	4.6r
	CН	5.9	5.8	5.8	$5-7$	5.3
	нсн	0.57	0.67	0.56	0.67	1.24

*⁰*All force constants in mdyn **A-l;** the bending force constant for an angle A-B-C is scaled by the inverse product of the A-B and B-C bond lengths. *b* Parameter sets are defined in Table 1. **C** G. Herzberg, ' Infrared and Raman Spectra of m rache 1. O. Herzborg, minated and realization, 1945.
Polyatomic Molecules', Van Nostrand, Princeton, 1945.
4 J. W. Nibler and G. C. Pimentel, *J. Mol. Spectroscopy*, 1968, **26**, 294. • I. Suzuki, M. A. Pariseau, and J. O Brown, *J. chim. Phys.,* 1959, **56,** 745. **17** G. Nagarajan, *Austral. J. Chem.,* 1963, **16,** 717. *k* M. A. Pariseau, I. Suzuki, and J. Overend, *J. Chem. Phys.*, 1965, **42**, 2335. *i* R. Teranishi and J. C. Desius, *J. Chem. Phys.*, 1954, 22, 896.
i D. C. McKean, *Spectrochim. Acta*, 1966, 22, 269. *ⁱ* R. E. WeSton and T. F. Brodasky, *J. Chem.* and Y. Morino, *Bull. Chem. Soc.* Japan, 1965, **38**, 805. ⁿ S. R.
Polo and M. K. Wilson, J. Chem. Phys., 1954, **22**, 900. *o* J. L.
Duncan and I. M. Mills, *Spectrochim. Acta*, 1964, **20**, 523. P E. C. Curtis, *J. Mol. Spectroscopy*, 1964, 14, 279, 292.
 ⁹ B. L. Crawford, J. E. Lancaster, and R. G. Inskeep, *J. Chem. Phys.***, 1953, 21, 678. '** J. Aldous and I. M. Mills, Spectrochim. Acta, 1963, 19, 1567.

bonding energy of $SO₂$ is underestimated owing to lack of *d* orbitals in the basis set ¹³ as in CNDO/SW,¹⁰⁻¹² although greater separation for the bonding energies of O_3 and SO_2 has been obtained.

Unfortunately there is a lack of experimental data for the bonding energies of the ions in Table 2. Both sets of atomic parameters predict $CO₂$ ⁻ dissociates to give the experimentally observed O^{-14} The parameters derived from Hinze and Jaffe valence states predict $NO₂⁻$ to give N^- , but the Hartree-Fock valence states predict the observed **O-.14**

Force constants for symmetric stretching and bonding modes of triatomic molecules compare well with experiment (Table **3).** There are insufficient experimental data to make an empirical choice between the four parameter sets. The simple overlap proportionality for the resonance integrals yields lower force constants than the proportionality dependent on VSIP values.

The results for $CO₂$ and HCN compare very favourably with recent *ab initio* calculations ¹⁵ which give 19.5, 8.0, and 26.9 mdyn **A-1** for the CO, CH, and CN stretching force constants respectively and **0.41** and 0.36 mdyn **A-1** for the OCO and HCN bending force constants respectively. Ab initio studies of the potential surfaces of the other triatomic molecules have not been reported.

The OO stretching force constant of O_3 is too large, as in the case of O_2 , whereas the force constant of NO is

l3 S. Rothenberg and H. F. Schaeffer, *J. Chem. Phys.,* 1970, **53,** 3014.

¹⁴ J. Hinze and H. H. Jaffé, *J. Amer. Chem. Soc.*, 1962, **84**, 540; *J. Phys. Chem.*, 1963, **67**, 1501.
¹⁵ M. D. Newton, W. A. Lathan, W. J. Hehre, and J. A. Pople,

J. Chem. Phys., 1970, **52,** 4064.

too large but in N_2O it is underestimated, and the calculated equilibrium bond lengths are too short and too long for the N-N and N-O bonds respectively. In contrast, the calculated NO equilibrium bond length in HNO is less than the observed value, and the calculated force constant is overestimated.

The calculated ground states of the polyatomic molecules agree with experiment. For the CH, radical, two different ground states are predicted depending on the parameters; the ground state of $CH₃$ is planar, $2A_2$ ", although it may be slightly nonplanar.^{7,16,17} The parameter sets (I) and (11) calculations are, therefore, the more satisfactory. Inclusion of VSIP values in the resonance integrals leads to similar effects for other AH, molecules for which there are no experimental data.

Agreement between the calculated and observed equilibrium geometries of polyatomic molecules (Table 1) is good. The mean deviations from experiment of the bond lengths not used to calibrate are $0.016, 0.021, 0.015$, and 0.019 Å for parameter sets (I) — (IV) ; the corresponding deviations for bond angles are 1-5, 2.7, 3.9, and **3.5".**

The observed trend for single, double, and triple CC bonds of hydrocarbons is reproduced, with lengthening of the C_2H_2 and C_2H_4 bonds. In contrast recent *ab initio* calculations account for the C_2H_6 bond but shorten the C_2H_2 and C_2H_4 bonds by 0.035 and 0.025 Å respectively.¹⁵ The CNDO/2 method predicts bonds which are short by 0.006, 0.026, and 0.075 Å for C_2H_2 , C_2H_4 , and C_2H_6 respectively,¹⁸ which cannot be fitted by adjusting the CNDO $/2$ carbon bonding parameter.¹⁹ The Fischer-Kollmar modification ¹⁸ yields deviations of 0.010, 0.005, and -0.014 Å for C_2H_2 , C_2H_4 , and C_2H_6 (where the negative sign indicates the Calculated bond is too short) by optimizing all empirical parameters for a large number of hydrocarbon molecules. By a similar procedure, Dewar and Haselbach **2o** optimized their MINDO/2 method to give deviations of -0.003 , -0.002 , and -0.010 Å for C_2H_2 , C_2H_4 , and C_2H_6 respectively.

The bonding energies of the polyatomic molecules in Table 2 are in reasonable agreement with experimental data where this is available. The bonding energies of C_2H_2 and C_2H_4 are too low with all parameter sets, and the CO bond in formaldehyde is underestimated and consequently the bonding energy is greater than the observed value.

The force constants of the polyatomic molecules reproduce most observed trends and are as reliable as those of the triatomic molecules (Table **3).** The deviations from experiment parallel those for the calculated equilibrium geometries and bonding energies. The

- **17 M.** Karplus, J. *Chem. Phys.,* 1959, 30, 15. **18** H. Fischer and H. Kollmar, *Theor. Chim. Ah,* 1969,13,213.
-
- **¹⁹ K. B. Wiberg,** *J. Amer. Chem. Soc.***, 1968, 90**, **59. ²⁰** M. J. S. Dewar and E. Haselbach, *J. Amer. Chem. Soc.,* **1970, 92**, **590.**
- **2l** K. Machida, H. Nakatsuji, H. Kato, and T. Yonezawa, J. *Chem.* Phys., 1970, 53, 1305.
- **²²**B. M. Deb and C. A. Coulson, *J. Chem. SOG. (A),* 1971, 958.

force constants of the CC bond of the series C_2H_2 , C_2H_4 , and C_2H_6 are qualitatively very good, although those for C_2H_2 and C_2H_4 are low relative to that of C_2H_6 , and are less accurate than by a recent theory, specifically designed for C_2H_4 alone.²¹

The simple overlap approximation for the resonance integrals leads to lower stretching force constants. Hinze and Jaffé valence-state data predict that the CC stretching force constant of $C_2H_4^+$ is larger than that of C_2H_4 and that ionization of C_2H_4 leads to a shorter CC bond length: opposite effects are predicted by Hartree-Fock atomic parameters. These differences are due to an orbital rearrangement of $C_2H_4^+$.

General Discussion.-The mean deviations from experiment of the bond lengths of all molecules not used in the calibration are 0-022, 0.025,0-024, and 0.028 **A** for parameter sets (I) — (IV) . The deviations for the bond angles are **3.4,** 3.1, **4.8,** and 4.1" comparing favourably with *ab initio* calculations which have an average deviation of calculated and experimental bond lengths and angles of 0.035 Å and 1.7° .¹⁵ For those molecules not used in parameterization the present results are better than those of a recent theory for the interhalogens.22 The semiempirical results are not restricted to first-row atoms only; thus the mean deviations obtained include the relatively poor results obtained for CS and SO bonds.

The method differentiates between bent and linear structures and between planar and nonplanar structures. The mean deviations for the angles are largely due to a few molecules, the angles of which are very sensitive to changes in the parameters. The inclusion of VSIP values in the evaluation of resonance integrals generally predicts larger angles than the simple overlap proportionality.

The equilibrium geometries of many of the molecules were subject to certain symmetry constraints. Several calculations were repeated with the symmetry constraints removed. In every case the calculated equilibrium geometry was the same as with constraints.

The CNDO/BW² calculation of molecular potential surfaces yields good bonding energies comparable to the CNDO/SW results, based on experimental equilibrium geometry,¹⁰⁻¹² and yields better bonding energies than the Hartree-Fock method or other semiempirical methods, such as CNDO/2 **23** or extended Huckel theory.ll

No particular parameter set yields consistently better bonding energies, and the average absolute deviations are not appreciably affected by changes in the parameters, although the bonding energies of individual molecules are sensitive. Slightly better bonding energies are obtained with atomic parameters evaluated from Hinze and Jaffé valence states. While the simple overlap pro-

l6 G. Herzberg, *Proc.* Roy. *SOG.,* 1961, A, **262,** 291.

²³ J. A. Pople and D. L. Beveridge, 'Approximate Molecular Orbital Theory,' McGraw-Hill, New York, 1970.
²⁴ *Chem. Soc. Special Publ.*, No. 12, 1958 and No. 18, 1965.
²⁵ JANAF Thermochemical Tables, Dow Chemical Co.

Midland, Michigan, 1965. **²⁶**Selected Values **of** Chemical Thermodynamic Properties,

National Bur. Standards Circular **500,** U.S. Government Printing Office, Washington, D.C., 1952.

portionality for the resonance integrals yields slightly lower average deviations than the approximation in which VSIP values are included in the evaluation of resonance integrals. All parameters have been applied to both closed and open-shell configurations, and the parameterization is equally successful for closed and open-shell configurations.

Conclusion.-The CNDO/BW theory in no way alters the results or conclusions previously derived for dipole

²⁷J. M. Sichel and **M. A.** Whitehead, *Theor. Chirn. Acta, 1968,* **11, 254.**

moments and quadrupole coupling constants by the $\text{CNDO/SW method.}^{27,28}$

We thank the National Research Council of Canada for support of this research and for the award of a scholarship (to R. J. B.), the University of Manitoba Computing Centre for computing facilities, the Chemistry Department of the University of Manitoba for hospitality and facilities (to R. J. B.).

[1/455 Received, March 31st, 19711

²⁸J. M. Sichel and M. **A.** Whitehead, *Theor. Chim. Acta, 1968,* **11, 263.**